中国光刻机历程
1964年中国科学院研制出65型接触式光刻机;1970年代,中国科学院开始研制计算机辅助光刻掩膜工艺;清华大学研制第四代分部式投影光刻机,并在1980年获得成功,光刻精度达到3微米,接近国际主流水平。而那时,光刻机巨头ASML还没诞生。
然而,中国在1980年代放弃电子工业,导致20年技术积累全部付诸东流。1994年武汉无线电元件三厂破产改制,卖副食品去了。
1965年中国科学院研制出65型接触式光刻机。
1970年代,中国科学院开始研制计算机辅助光刻掩模工艺。
1972年,武汉无线电元件三厂编写《光刻掩模版的制造》。
1977年,我国最早的光刻机GK-3型半自动光刻机诞生,这是一台接触式光刻机。
1978年,1445所在GK-3的基础上开发了GK-4,但还是没有摆脱接触式光刻机。
1980年,清华大学研制第四代分步式投影光刻机获得成功,光刻精度达到3微米,接近国际主流水平。
1981年,中国科学院半导体所研制成功JK-1型半自动接近式光刻机。
1982年,科学院109厂的KHA-75-1光刻机,这些光刻机在当时的水平均不低,最保守估计跟当时最先进的canon相比最多也就不到4年。
1985年,机电部45所研制出了分步光刻机样机,通过电子部技术鉴定,认为达到美国4800DSW的水平。这应当是中国第一台分步投影式光刻机,中国在分步光刻机上与国外的差距不超过7年。
但是很可惜,光刻机研发至此为止,中国开始大规模引进外资,有了"造不如买”科技无国界的思想。光刻技术和产业化,停滞不前。放弃电子工业的自主攻关,诸如光刻机等科技计划被迫取消。
九十年代以来,光刻光源已被卡在193纳米无法进步长达20年,这个技术非常关键,这直接导致ASML如此强势的关键。直到二十一世纪,中国才刚刚开始启动193纳米ArF光刻机项目,足足落后ASML20多年。
光刻机被誉为半导体产业皇冠上的明珠。光刻机的主要作用是将掩模版上的芯片电路图转移到硅片上,在某种程度上来说,光刻工艺的决定了半导体线路的线宽,同时也决定了芯片的性能与功耗,越高端的芯片,所需要的光刻工艺也越先进。
“工欲善其事,必先利其器”,光刻机就是芯片制造中的那一把“利器”,也被誉为半导体产业皇冠上的明珠。光刻机的主要作用是将掩模版上的芯片电路图转移到硅片上,在某种程度上来说,光刻工艺的决定了半导体线路的线宽,同时也决定了芯片的性能与功耗,越高端的芯片,所需要的光刻工艺也越先进。
大家都知道,芯片很重要,离开了芯片,几乎所有电子设备都会失去作用。但要是离开光刻机,自然也就制造不出芯片,同样也不可能有手机、电脑等电子设备的产生。
光刻机的关键技术:以光为媒,刻化微纳于方寸之间
指甲盖大小的一枚芯片,内部却包含了上千万个晶体管,犹如一座超级城市,线路错综复杂,这跟光刻机的工作原理相关,其中涉及系统集成、精密光学、精密运动、精密物料传输、高精度微环境控制等多项先进学科。因此光刻机是所有半导体制造设备中技术含量最高的设备,具备极高的单台价值。
如果单纯从工作原理的角度来解析,光刻机并不复杂。“以光为媒,刻化微纳于方寸之间”,光刻机是通过串联的光源能力以及形状控制手段,将光束透射过画着线路图的校正,经过物镜补偿各种光学误差,将线路图成比例缩小后映射到硅片上,然后使用化学方法进行显影、刻蚀处理,最终得到刻在硅片上的电路图。
但是它最难的在于,需要在极小的空间内完成超精细的纳米级雕刻工艺,为具备这项能力。需要掌握的关键技术有很多,主要包括以下几种:
1、“微缩投影系统”即所谓的“光刻机镜头”。这种镜头不是一般的镜头,其尺寸可以达到高2米直径1米甚至更大。光刻机的整个曝光光学系统,可能需要20多块锅底大的镜片串联组成,将光学零件精度控制在纳米级别。每块镜片都由高纯度透光材料制成,还包括高质量抛光处理等过程,一块镜头的成本在数万美元上下;
2、既然叫做“光刻机”,所以“光源”也是光刻机的核心之一,要求光源必须发出能量稳定且光谱很窄很窄的紫外光,这样才能保证加工精度和精度的稳定性。按照光源的发展轨迹,光刻机从最初的紫外光源(UV)发展到深紫外光(DUV),再到如今的极紫外光(EUV),三者最大的不同在于波长,波长越短,曝光的特征尺寸就越小。
(资料源自上海微电子官网、东兴证券研究所,OFweek电子工程网制图)
最早的光刻机采用汞灯产生的紫外光源,从g-line一直发展到i-line,波长从436nm缩短到365nm。随后,业界利用电子束激发惰性气体和卤素气体结合形成的气体分子, 向基态跃迁时所产生准分子激光的深紫外光源,将波长进一步缩短至193nm,由于在此过程中遇到了技术障碍,因此采用浸没式(immersion)等技术进行矫正后,光刻机的极限光刻工艺节点可达28nm。
如今,业界最先进的光刻机是EUV光刻机,将准分子激光照射在锡等靶材上,激发出波长13.5nm的光子作为光刻机光源。EUV光刻机大幅度提升了半导体工艺水平,能够实现7nm及以下工艺,为摩尔定律的延续提供了更好地方向。而业界也只有ASML一家能够提供EUV设备,处于产业金字塔顶端;
3、分辨率,对光刻工艺加工可以达到的最细线条精度的一种描述方式。光刻的分辨率受光源衍射的限制,所以与光源、光刻系统、光刻胶和工艺等各方面都有关系,总体来说,分辨率和光源波长的关系可以用公式“R(分辨率)=K1(工艺参数)λ(光源波长)/NA(光学镜头的数值孔径)”;
4、工艺节点,是反映芯片技术工艺水平最直接的参数。工艺节点的尺寸数值基本上和晶体管的长宽成正比关系,每一个节点基本上是前一个节点的0.7倍,0.7X0.7=0.49,所以每一代工艺节点上晶体管的面积都比上一代小大约一半,因此单位面积上的晶体管数量将翻番,这就是著名的摩尔定律。一般18~24个月,工艺节点就会发展一代。
工艺节点发展以28nm为分水岭,虽然依然按照0.7倍的规律前进,但实际上晶体管的面积以及电性能的提升远落后于节点数值变化。比如英特尔当时统计数据显示,他们20nm工艺的实际性能已经相当于三星14nm和台积电的16nm工艺。更麻烦的是,不同厂商工艺节点换算方法不一,导致了很多理解上的混乱。因此,只有对芯片有很高要求的产品才会采用28nm及以下先进工艺。当然,发展到现在,台积电已经开发出了更为先进的5nm工艺并实现量产,今年下半年就会有搭载相关芯片的产品面世。
高端光刻机为什么难买又难造?
一般来说,一条芯片生产线上需要好几台光刻机,而一台光刻机的造价也非常高,其中成像系统和定位系统最贵,整台设备算下来造价三千万到五亿美元不等。此外,光刻机上的零部件还包括来自瑞典的轴承、德国的镜头、美国的光栅、法国的阀件等等,都属于各个国家的高端工艺产品。
光刻机的折旧速度非常快,每天大概就要花费3~9万人民币,将其称为“印钞机”也不为过。正是因为光刻机昂贵的造价和上文中提到的各项高先进技术,ASML一年也只能制造出20多台EUV光刻机。
这么昂贵的设备,ASML公司一年卖出几台就够养活整个公司了,中国市场一直以来都是ASML看好的重点业务区域,但是却偏偏不能向中国出售高端光刻机,为什么呢?这里就要提到《瓦森纳协定》。比如中芯国际苦苦等待的EUV光刻机,虽然设备一直没到,但是也没有因此停止研发进程,已经在14nm的基础上研发出“N+1”、“N+2”工艺,等同于7nm工艺,公司联合首席执行官兼执行董事梁孟松也透露出,现阶段哪怕不用EUV光刻机,也可以实现7nm工艺。但想要大规模成熟量产,依然离不开EUV光刻机。
中国又被誉为“制造大国”,既然买不着,那自己造如何?
在过去,搜狐能 copy 雅虎,淘宝能 copy eBay,滴滴 copy Uber,那咱们能不能 copy 一个ASML出来自己造光刻机?要知道,ASML可谓是当前光刻机领域的“一哥”,尽管尼康和佳能与之并称“光刻机三巨头”,但在支持14nm及以下的光刻机上,唯有ASML一家独大。
“光刻机之王”ASML的成功难以复制。ASML出身名门,由原本荷兰著名的电器制造商飞利浦公司半导体部门独立拆分出来,于2001年更名为 ASML。
在ASML背后,还有英特尔、三星、台积电、SK海力士等半导体巨头为其撑腰,只有投资了ASML,才能成为其客户,拿到光刻机产品的优先供货权。多方资本注入下,ASML也有了更多强化自身实力的机会:
2001年,ASML收购美国光刻机厂商硅谷集团获得反射技术,市场份额反超佳能,直追尼康;
2007年,ASML收购美国 Brion 公司,成为ASML整体光刻产品战略的基石;
2012年,ASML收购全球知名准分子激光器厂商Cymer,加强光刻机光源设备及技术;
2016年,ASML收购台湾半导体设备厂商汉微科,引入先进的电子束晶圆检测设备及技术;
2016年,ASML收购德国卡尔蔡司子公司24.9%股份,加强自身微影镜头技术;
2019年,ASML宣布收购其竞争对手光刻机制造商Mapper知识产权资产。
在上文中提到,光刻机设备融合了多门复杂学科,不仅种类繁多,还要求是当前该领域最先进的技术,放眼当下没有任何一家公司敢说自己能在这些领域都做到最好。也就只有ASML能够不断通过自研、收购等方式,一步步走上神坛。
说出来很多人可能不信,我国最早研发光刻机的时候,ASML还没有出现。资料记载,1977年也就是中国恢复高考那年,我国最早的光刻机-GK-3型半自动接近式光刻机诞生,由上海光学机械厂试制。
80年代其实开了个好头,1981年,中国科学院半导体所成功研制出JK-1型半自动接近式光刻机样机。1982年国产KHA-75-1光刻机的诞生,估计跟当时最先进的佳能相比也就相差4年。1985年中国第一台分步投影式光刻机诞生,跟美国造出分布式光刻机的时间差距不超过7年。这些都说明当时中国其实已经注意到了投影光刻技术的重要性,只是苦于国内生产工艺尚不成熟,所以很难实现量产。
80年代末期,“造不如买”的思想席卷了大批制造企业,我国半导体产业研发进程出现了脱节,光刻机产业也未能幸免。
虽然后续一直在追赶国外列强的脚步,但产业环境的落后加上本来就与世界先进企业有差距,使得中国终究没有在高端光刻机领域留下属于自己的痕迹。
“眼看他起朱楼,眼看他楼塌了”,80年代初期奠定的中国光刻机产业基础就这样被轻视了。这也是为什么我国光刻机产业一直赶不上国外的原因,再加上光刻机制造所需要的各种零部件,也都受到不同程度的管制,如今想再追回来,实在太难。
中国高端光刻机正在路上
2001年, 科技 部和上海市于2002年共同推动成立上海微电子装备公司,承担国家“863计划”项目研发100nm高端光刻机。据悉,中电科四十五所当时将其从事分步投影光刻机团队整体迁至上海参与其中;
2008年, 科技 部召开国家 科技 重大专项"极大规模集成电路制造装备及成套工艺"推进会,将EUV技术列为下一代光刻技术重点攻关的方向。中国企业也将EUV光刻机列为了集成电路制造领域的发展重点对象。
如今,国内从事光刻机及相关研究生产的除了上海微电子装备、合肥芯硕半导体、江苏影速集成电路装备以外,还有清华大学精密仪器系、中科院光电技术研究所、中电科四十五所等高校/科研单位。
在研发成果上,2016年,清华大学“光刻机双工件台系统样机研发”项目成功通过验收;2016年,清华大学“光刻机双工件台系统样机研发”项目成功通过验收;2018年,国家重大科研装备研制项目“超分辨光刻装备”通过验收,也是世界上首台用紫外光源实现22nm分辨率的光刻机,意义在于用便宜的光源实现较高的分辨率,用于一些特殊制造场景。
可以看到,在光刻机的自主研发进程上,中国也取得了很大的进步。但相对来说比较缓慢,要想真正研发出高端光刻机,需保证多个学科和领域的技术水平达到或者超过世界先进水平,任何一环节落下都会影响产品的性能。
这是美国的精准打击,有本事查查这个馊点子是如何出笼?我觉得正是我们50年代人掌舵时缺乏几乎所有科学知识,被自己权力切割,连同40后与60后的纽带一同切掉,30后已失能,40后除做房地产的尖子,其余趋向失能,50后是鸿沟的分界,权力中心做自然科学的极少,人才都是做买卖的,买不到自然只有造,说造,得创新,虽然少,但不乏有能做光学化学电学,机电一体化的,光电的组织能力,基本都要退休能要吗?后来60,70都是40,50教的,他们都缺乏系统边缘渗透交融能力,天天喊隔行如隔山,各霸一方,搞这种综合高 科技 设备既缺乏专业精通,又少有隔行合作的气量,包括航空发动机也一样,他瞄准了不打这,那打什么?
因为世界上的高端光刻机只有荷兰在生产,产量有限所以难买。光刻机融合了工业制造的几乎各个方面的高精技术所以也难造。
高端光刻机难买是因为以美国为首的西方国家对中国进行严密的技术封锁,难造是因为光刻机是高 科技 的集成产品,在我国基础如此薄弱的情况下还能取得如此成绩本身就是一个奇迹,假以时日,光刻机也会象盾构机一样被攻克。
难买是别个不想让你超越自己!难造是因为之前有配套设施没把它当回事!接下来重视起来了就不难造了!
目前有消息称华为将小规模自建IDM,由自己掌控芯片设计、生产、销售,从而满足自己业务的需求。这是华为应对当前断芯的一条新路线,想要实现困难很大,资源消耗绝对是天价,但是的确具有一定的可实现性,也能帮助华为现有业务。
但是,即便华为最终能自建IDM体系,也不代表华为能造出光刻机来,这根本不是华为能干的领域!
1、华为无光刻机资源累积,从零起步不可能
现在国内很多网友给我的感觉是魔症了,整天想让华为干这干那,可问题是华为只是一家私人企业,或许能在半导体这个领域干出一番很牛逼的业绩来,也能为整个芯片产业上下游提供不小的帮助,但你不能让华为将整个产业链的事情全干了!
华为目前业务体系只涉及到了芯片设计领域,当然从业务的相通性来说,部分上下游的业务华为也有能力参与,比如下游的封装,上游的代工,华为都有能力派遣自己的技术人员提供帮助,甚至部分技术人员是有能力流动到上下游的企业中工作。
但是,这并不代表华为当前有实力去研发光刻机!生产制造设备这完全是另一个领域的事情了。
光刻机是一个很庞大的体系,即便是ASML也只是系统集成商而已,其同样要向全球采购一些精密零部件才可能组合成高端光刻机,同样也需要花资源去研发各个核心子系统。这些工作华为根本没有实力来完成,光美国的制裁就已经掐断了华为全球采购零配件途径来制造光刻机。
2、我国正全力研发光刻机中,无需华为重复投资
现在光刻机我们是在靠举国之力来研发,虽然上海微电子目前只能量产90nm节点的光刻机,但事实上国内已经研发出了先进光刻机需要的核心子系统,如双工件台、浸液系统,光源等等,这些核心系统的攻关已经让上海微电子具备研发出28nm节点光刻机的能力。当前业内的消息是这个台光刻机将于年内下线,未来2年应该能实现量产。
在已经有上海微电子以及其他科研团队和厂商产业化的情况下,华为也根本没必要去趟制造光刻机的浑水,不仅耗时耗资源,而且也会影响本身的业务。
Lscssh 科技 官观点: 因此,华为是根本不可能去自建光刻机的,没有这个技术累积,也没有庞大的资金来支撑,能小规模自建IDM就已经是非常牛的操作了。
最后想说,各位还是放过华为吧!别整天让人家研发这个,又搞那个的,人家又不听你们的,何必自嗨呢?
最近一段时间网上一直在流传华为有可能建立自己的芯片生产线,甚至有可能自己研发光刻机。
虽然很快这则招聘信息被删除了,但是大家都将这则招聘信息解读为华为有可能正在研发自己的光刻技术。
而最近两天网上又传出华为将要自建IDM(Integrated Device Manufacture)模式转型,这种模式就是从设计——生产——手机终端等等,都是自己家生产,华为最终的目的就是打造像三星、英特尔那样具备自研自产芯片能力的超级企业。
华为之所以选择这条路线实属无奈,因为最近两年时间华为一直遭到某些国家的打压,在某些国家制裁之下,华为不能将自己的芯片委托给第三方芯片厂家进行生产,结果有可能导致自己即便有先进的芯片设计能力,也不能将这些芯片生产出来。
在这种背景之下,华为只能投入巨额资金去建立自己的芯片生产线。
但至于华为有没有研发自己的光刻机,目前我们暂时没法知道,虽然华为之前发布过一则关于光刻工艺的招聘岗位,但这个岗位有可能也是跟芯片设计有关的,因为在芯片设计的过程当中也要考虑一些光刻工艺技术。
再说华为只发布了一个岗位,如果他们真的有意研究光刻机,那肯定会招很多人的,所以从目前华为的动向来推断,他们应该不会自己研发光刻机,打造自己的芯片生产线倒是有很大的可能性。
而华为之所以没必要研发自己的光刻机,因为光刻机研发难度非常大,而且需要投入的资金非常多。
光刻机作为全球最顶尖的制造设备之一,目前只有少数国家掌握光刻机的制造技术,特别是对于7纳米以上的高端光刻机来说,目前更是只有荷兰ASML一家可以制造。
而且荷兰也并不是完全依靠ASML自己把光刻机研发出来,ASML的成功事实上是很多国家共同努力的结果,其背后有很多核心零部件都是由其他国家的企业供应的,比如镜头来源于德国的蔡司,光源设备来源于美国的企业,还有很多技术都来源于日本,美国,德国等多个国家。
而这里面有很多核心零部件西方国家都是对我国限制出口的,这意味着即便华为有意向研发光刻机,但是如果短期之内不能获取一些核心的零部件, 所有的核心零部件都要自己去研发,这个过程会非常漫长,也不一定取得很好的成果,想要达到ASML那样的水平就更难了。
也正因为考虑到光刻机研发的难度以及周期非常长,所以华为应该不会自己投入太大的精力和时间去研发光刻机。
我个人认为华为最有可能的是投资入股目前中国一些具备光刻机研发实力的科研机构或者企业。
毕竟最近几年我国在光刻机研发方面已经取得了一些积极的成果,比如上海微电子研究所已经成功研发出28纳米光刻机,预计将于2021年底正式投产。
再比2018年8月份,清华大学的研究团研发出了双工作台光刻机,这使得我国成为全球第2个具备开发双工作台光刻机的国家;
到了2019年4月,武汉光电国家技术研究中心甘棕松团队采用二束激光在自主研发的光刻胶上突破了光束衍射极限,采用远场光学的办法,成功刻出9nm线宽的线段,实现了从超分辨成像到超衍射极限光刻制造的重大创新,这个技术突破让我国打破了三维纳米制造的国外技术垄断,在这个全新的技术领域内,我国从材料、软件到光机电零部件都不再受制于人,使得我国的光刻机技术又向前迈进了一步。
2020年5月26日,由中国科学院院士彭练毛和张志勇教授组成的碳基纳米管芯片研发团队在新型碳基半导体领域取得了重大的研究成果。
2020年7月中国科学院苏州纳米技术与纳米仿生研究所研究员张子旸与国家纳米中心研究员刘前合作,成功研发出了一种新型5nm超高精度激光光刻加工方法。
由此可见,最近几年我国在光刻机研发方面已经取得了比较喜人的成果,虽然目前我们跟国际顶尖水平仍然有较大的差距,但至少这种差距正在不断缩小。
我相信未来5~10年,我国光刻技术肯定会取得突破性的发展,到时说不定我们的光刻技术就有可能达到世界先进水平,甚至是领先水平,在这种情况下,华为就可以使用国产的一些光刻机,不用担心被西方国家限制的问题。
最近,华为的一张招聘启事刷屏了,内容主要是华为东莞基地招聘光刻工艺工程师,这说明华为已经开始布局光刻机产业,由于美国的围追堵截,目前台积电已经公开宣布不会再给华为代工芯片,所以华为目前没有别的选择了。
中国目前的光刻机工艺水平
中芯国际目前虽然通过N+1工艺绕过了光刻机的限制,可以生产7nm芯片,但是毫无意义,中芯国际仍旧使用了部分美国设备,要遵从美国的法规,否则可能也会受到制裁。
上海微电子据称明年可以生产28nm光刻机,这与国际水平的差距还是非常大的,开始的时候我们是跟人家在同一起跑线,但是越到后面越落后,因为中国根本就没有相关配套产业链,随着制程越来越先进,相关配套要求越来越高,我们开始跟不上国外的节奏,最后只能放弃,90年代上海微电子从0开始,中间遭遇美国打压,零件无法进口,又停滞了,后来国家联合科研院所攻关才成功实现90nm光刻机的研发。
光刻机的难度
首先就是设备过于复杂,因为光刻机的部件很多,包括离子注入机,单晶炉,刻蚀机,氧化炉等等,需要的材料也很多,包括电子级多晶硅,光刻胶,电子气体等等,这里列举的仅仅是极少的一小部分,所以要把如此复杂的设备搞明白的话,是一件非常困难的事情。
其次就是想要收集这些零部件太困难了,高达8万多个的零部件分别来自几百家公司,更何况缺少图纸,难怪荷兰ASML公司说中国永远造不出顶级光刻机。更别说美国还从中作梗,一旦挥舞制裁大棒,国外公司都不会给我们供货。
某人说我们可以仿制,AMSL公司为自己的每一台光刻机都配备了被动预警装置,如果被拆解的话,不仅会向总部发出报警信号,而且会启用“自毁”程序。
华为能多久做出来光刻机?
目前虽然华为遭遇困难,但是只要研发能力在,根基就不会被动摇,不给华为代工,大不了不卖手机,不卖基站了,转型搞研发和大学一样,还有中兴可以搞5g,国家发工资给华为,十年后搞出光刻机,把研发的成果商用化,直接起飞。
总结:中华有为
中国制造核弹,国外认为不可能成功,中国制造太空飞船,国外认为不可能成功,中国制造北斗导航系统,国外认为不可能成功,所以一件事能不能做到,不在于有多难,而在于有多大信心,5G技术不难吗?不是一样被我们拿下了,我们不能盲目自信,但是也不能妄自菲薄,中国人的智慧是毋庸置疑的。
最近有传言华为正在招聘“光刻工艺工程师”,因此不少网友纷纷猜测:华为这是打算自己做光刻机吗?甚至还有人说华为能够在2年内搞定5nm的光刻机,这就有些太夸张了,事实也并非如此。
虽然800万块芯片从数字上看起来很大,但是相对于华为旗舰手机的销量只是杯水车薪。根据官方数据,上代华为Mate 30系列上市60天全球销量就突破了700万台。因此800万麒麟芯片也只够华为Mate 40系列卖三个月。因此也有传言称,华为正在寻求和联发科甚至三星、高通的合作,前不久华为就一口气发布了4款搭载联发科芯片的手机和两款平板电脑。
但是联发科等企业同样也受到外界的压力,在最严重的情况下,华为可能连第三方芯片也无法采购,这样一来华为的终端业务就将面临停摆,甚至运营商设备业务也会受到影响。在这个大背景下,华为寻求制造光刻机,走自研芯片的道路也是一个求生的方向。
那么华为能够在短时间内造出光刻机吗?很多业内人士都不是特别看好,因为光刻机的原理虽然很多专家都懂,但制造工艺基本上都掌握在欧美发达国家手中。而且用于处理器的光刻机对精度的要求非常高,因为它本身就是用来生产纳米级芯片的。
以荷兰的ASML光刻机为例,它每一台设备都需要实时联网,通过网络加载中控程序才能正常运行,而这些运营程序软件同样是掌握在外国人手中的。毫不夸张的说,一旦ASML把网络断了,咱们买回来的光刻机就是一堆废铁。而ASML光刻机由售方的技术人员安装调试完毕之后,就不能移动了,稍微有点异常就会断网。因此就算那么大一台ASML光刻机摆在我们面前,我们也很难仿制出一台。
而华为是一家网络通信和移动终端企业,基本上没有什么光刻机的技术储备。就算现在开始招人做光刻机,没有上十年的时间和百亿级别的投入,是很难看到成果的。
更何况我们国家已经有可以生产光刻机的企业,比如上海微电子已经造出了90nm的光刻机,虽然和台积电的5nm相比差距还有20年,但好歹也有一个具体的方向。所以与其让华为从无到有打造光刻机,还不如将相关人才集中到上海微电子这样的国产光刻机企业,发挥出“集中力量办大事”的精神,花大力气缩短制造高精度光刻机的时间。
而事实上,这次华为所招聘的“光刻机工艺工程师”也是属于研发人员,而不是技术人员。这个职位主要是在光刻机代工厂驻场,来监督和把控芯片工艺制造流程的,并不涉及光刻机设备的生产与制造。
所以我认为,华为接下来自己制造光刻机的可能性不高,因为这个难度太大了。 但是华为会加强与国内专业芯片供应链的合作,比如与中芯国际、上海微电子合作,派驻研发人员一起来攻克光刻机的难关。 相信在国内企业的共同努力下,未来一两年内实现28nm甚至14nm光刻机完全自主还是有可能的。而到了14nm这个级别,至少用在手机和通信设备上是没有问题的,可以保证华为的主营业务存续,剩下的则仍然需要慢慢追赶。至少光刻机技术最多也就到1nm,这就像是龟兔赛跑,虽然对手已经跑出很远了,但终点就在那里,只要肯投入研发力量,总有一天可以抵达的。
不知不觉在很多朋友的眼里华为已经开始神化了,感觉华为缺什么就能自研搞出什么,现在既然被光刻机卡住了脖子,那么自研个光刻机不就行了?但从华为现在的处境上看,华为不可能也不会在光刻机领域深耕。
华为并没有相关的技术积累
最近几天一张 华为招聘光刻工艺工程师 的截图火了,很多人以为华为要开始自研光刻机了。于是我也去网上搜索了华为相关的职位招聘,但是并没有发现这个岗位,所以 这大可能性是一张假图片。
况且华为真的有能力造出光刻机吗?这个答案也是否定的。 就像是建房需要地基一样,华为并没有在光刻机领域深耕,自然也就没有造出光刻机。
虽说华为确实有芯片自研的能力,也可以派遣技术人员去代工厂监督指导,可能对光刻机的生产流程也有一定了解,但是面对目前算是全世界最顶尖 科技 的成果光刻机, 华为依旧是有心无力 。
华为即使自研也没法绕过美国禁令
如果华为真的想要自研光刻机,那么摆在华为面前的头等大事就是 如何绕过美国的禁令 。
中芯和台积电为什么被迫向美国低头,拒绝为华为代工?最重要的原因就是在加工的过程中用到了美国的技术,这算是绕不过去的一个坎。
同理在光刻机自研的领域也一样, 如果华为想要走自研的道路,那就不能用到美国的技术,这就意味着华为必须走出来一条区别于现有的光刻机的完全不同的道路 。这种从0到1的创新,对任何公司来说都是不可能完成的任务。
光刻机领域并不需要华为
光刻机领域真的需要华为这个后来者吗?这个答案一定的否定的。
目前 上海微电子已经生产出90nm制程的光刻机,据说在2021年将会上市28nm的光刻机。 虽说和ASML公司依旧有着十年以上的差距,但是比华为从无到有明显的更具有优势。况且术业有专攻,华为肯定不能什么都自己干,那样华为肯定会被逐渐增多的产业链完全拖垮,最终也是得不偿失的。
把专业的事情交给对应的公司来做,这样华为也会活的轻松一些。
华为目前能做的还是联系一切力量逼迫美国收回禁令,否则就算是中国生产出自己的能够满足华为要求的光刻机,华为的麒麟系列和手机业务估计也要凉透了。
咱们要华为造光刻机,华为会说:“我实在是太难了!ASML自1984年从飞利浦独立到现在EUV 5nm量产花了30多年,而我在光刻机领域是0基础,光刻机这玩意比造火箭、原子弹难多了。”
光刻机霸主AMSL封神之路
AMSL曾说过:“如果我们交不出EUV,摩尔定律就会从此停止。”事实确实是AMSL在光刻机领域已经完全登顶了王座,并且没有人能望其项背。EUV重达180吨,拥有超过10万个零部件,90%的关键设备来自外国而非荷兰本国,ASML作为整机公司,实质上只负责光刻机设计与集成各模块,需要全而精的上游产业链作坚实支撑。通俗一些讲:就算给你EUV完整的图纸和配件,也很难调试出光刻芯片的精度。
台积电能吃下苹果、华为5nm订单,背后少不了AMSL的存在。芯片制造想要突破10nm以下节点,必须要用到EUV。EUV仅AMSL一家能造,不管是台积电、三星想要造成芯片,只能乖乖的向AMSL订光刻机。
翻开近几年全球芯片产商的光刻机订货单,其中绝大多数订单都属于AMSL,AMSL已稳居第一10多年。如:2019年,AMSL共出货229台,净销售额为118.2亿欧元,净利润为25.2亿欧元,而尼康出货46台,佳能出货84台。在高端光刻机机(EUV)市场,仅AMSL唯一玩家。
早期的光刻机并不比一台照相机和投影机复杂,但随着芯片关卡等级指数级难度系数增加,光刻机的复杂程度和精细度也呈指数级难度系数增加。日本的尼康、佳能,美国的Kasper仪器、Perkin Elmer、Cobilt、GCA等公司陆续被AMSL踩下。
世界芯片产业格局
芯片制造业经过多年的沉淀和技术发展,已经呈现了金字塔形的产业结构。有能力制造芯片的仅限英特尔、台积电、三星、格罗方德、联电、中芯国际、华虹等几个头部企业。英特尔、台积电、三星都在积极开展10nm、7nm及更先进制程,格罗方德已经宣布无限期停止7nm制程的研发,而中芯国际由于技术的代差还在努力的追赶。
目前只有台积电、三星、中芯国际有能力大批量生产手机芯片,中芯国际的技术远不如台积电、三星。华为、苹果、AMD、高通、联发科都不是自己制造芯片,而是将自己已经设计好的图纸给芯片代工厂生产。
“芯片设计→芯片制造→封装测试”这样的模式有以下优点,这些优点是自己设计、自己生产时代很难实现的。
如果将芯片制造比喻成建房子,华为设计了房子的蓝图,设计能力越来越强但没能力建房子,于是叫了技术成熟、有经验的台积电来施工。台积电可以把设计图更好的还原出来,且稳定不容易出问题。即使华为自己可以施工,一时半会也不敢直接做,因为时机还不够成熟。
华为的现状
了解华为 历史 的都知道,它是做通信设备起家的。通过在通信行业多年的经验积累,逐步将自己的核心竞争力转移到了手机、芯片、AI、云计算、物联网等新兴领域。仔细观察就会发现,这些领域跟华为本身是密切相关的。这些领域研发可以平滑过渡,并不需要很长的时间成本,短期都能获益。
从2020年上半年的业务构成来看,消费者业务占比57%(2019年上半年首次超过50%,2019年全年占比54.4%),并且始终保持快速增长。
在未来,华为还将以消费者业务为核心,以手机为主入口,以平板、可穿戴设备等为辅入口,结合泛IOT设备,为打造用户全场景智慧生活做准备(鸿蒙系统也是为未来的IOT做准备的)。
苹果也属于以消费者业务为核心的 科技 型公司,核心在于洞悉市场动向,提高用户粘性,吸引客户。芯片、手机是自己设计的,但芯片生产交由台积电,手机生产交由富士康,因为苹果知道自己生产芯片、手机是一件吃力不讨好的事情。同样华为也知道,更别提再去制造光刻机。
总结
短期内让华为自己制造光刻机、芯片是不切实际的。从一个企业的角度来看华为,要维持一个体量这么大的企业运转,那么就一定要保证资金链的正常运转。光刻机制造、芯片制造要花费很多人力、巨量的资金、很长的时间,并且短期内是不太可能获取利润。
但未来有无限可能,比如华为采用ARM的授权架构设计了华为系列芯片之前,谁能想到华为会涉足芯片设计。谁都不能预见未来华为会不会与光刻机制造、芯片制造产生交集。让我们拭目以待。
以上个人浅见,欢迎批评指正。
首先要知道的是华为产业根本不涉及光刻机领域,所以从零开始进军光刻机行业基本是不可能的。最好的方案就是联合国内光刻机行业的一些龙头企业进行联合研发,以此来研发比较高端的光刻机。
就目前来讲高端光刻机领域完全被荷兰的ASML所垄断,7纳米euv光刻技术全球仅有阿斯麦尔掌握,所以Asml在光刻机领域可以说是领先全球。像日本尼康佳能等还有我国的上海微电子跟啊斯麦尔的差距还是很大。
其实之前的时候高端光刻机领域应该说是佳能尼康也有一席之位的,但是由于ASML特殊的商业模式导致全球高端光刻机市场都被ASML所占,这也直接导致佳能尼康退出了高端光刻机市场。
再来回到华为这边,华为的优势在于其5G技术以及芯片设计等,芯片设计和生产都是芯片制造中非常重要的一环,而芯片生产最重要的也就是光刻机,几个月前美国针对华为的制裁也是从芯片制造这个点扼制华为。
所以说高端芯片制造还是我们的一大弱点,未来在高端产业的创新力我们还有很长的路要走。
华为现阶段想要造出光刻机是不太可能了,最多也只能是参与合作进行共同发展。
首先我国相对于荷兰的光刻机水准相差甚远,就比如我国现在最先进的制程工艺是28纳米的,就连中芯国际的14纳米工艺也是台积电合作提供的。而荷兰的光刻机已经可以做到5nm的工艺,甚至再往3纳米去发展。所以这种差距一目了然,华为作为一个零基础想要后来居上的企业是非常艰难的。毕竟我国已经投入了这么多,但现在差距还是很大。
其次华为也没有必要再去花这么多的钱去投入制造光刻机,因为现在光刻机已然到了一个非常成熟的阶段,现在最艰难的地方就是应该去怎么样去跟别人合作。不管怎么说华为也只是一个民营企业,想要他做所有的事情是完全不现实的。所以很多人对华为抱有期待,想要华为研制出光刻机并完成全线的自主生产是不太现实的。
所以至于华为多久能造出光客机这个问题上现在是没有答案的,因为华为要想最终能制造并且生产也只能跟别人去合作或者参与入股这样的方式来实现。
说实话真心希望能造出来 也真心知道难如登天 这个机器举全国之力都未必成功 如果华为成功 那只能说美国太慧眼识英雄了 华为有独自对抗八国联军的实力了 期待华为成功!作为中国人即使不喜欢华为也请不要伤害~现在真的很难了自己人就不要添乱了
网上有曝光华为招聘“光刻工艺工程师”的消息,我也看到了。如果属实的话,华为现在面临的困难有多大可想而知。
按照常理,在全球化时代,一家企业要包揽产业链从上到下的所有环节既不现实,也不经济,但美国的制裁逼得华为只有另起炉灶,自给自足。
说到华为多久能造出光刻机,其实国内能造光刻机的。中国于1977年研发成功第一台光刻机,1978-1985年先后研制成功三台光刻机。现在上海微电子的90nm光刻机可以商业化。有消息说,上海微电子会在十三五 科技 攻关拿下28nm,28nm应该2021年试制,2022年批量。虽然技术和国际先进水平有相当大的差距,但是任何困难都难不倒勤劳、智慧的中国人民。
芯 东西(ID:aichip001)文 | 董温淑
现在,5nm制程芯片作为目前可量产的最先进芯片,将是顶级手机的标配,也是摩尔定律真正的捍卫者。年内将推出的华为Mate 40采用的麒麟1020芯片、苹果iPhone 12搭载的A14仿生芯片不出意外,都会采用5nm制程。
不少证据正在证实这一点,3月份,有爆料称台积电成功流片麒麟1020;4月份,台积电宣布为苹果代工A14芯片;在近期的中美贸易摩擦中,台积电是否能按时向华为出货Mate 40芯片也着实让人捏了一把汗。这一连串事件之中,为两大手机龙头代工芯片的台积电成为关键角色,举足之间关系着华为手机芯片供应的命运。
然而, 台积电能吃下苹果、华为的5nm订单,背后还少不了一家荷兰厂商的存在 :芯片制造要想突破10nm以下节点,必须要用到EUV(极紫外线)光刻技术,而 EUV光刻机只有荷兰公司阿斯麦(ASML)能造 。不论是5nm量产赛道第一名台积电,还是第二名三星,想造出产品,就只能先乖乖向阿斯麦订货。
作为全球5nm产线不可或缺的狠角色,阿斯麦到底是一家什么样的公司?
我们不妨先理解“光刻”这项技术的重要性。如果把芯片比作刻版画。芯片生产的过程就是在硅衬底这张“纸”上,先涂上一层名为光刻胶的“油墨”,再用光线作“笔”,在硅衬底上“拓”出需要的图案,然后用化学物质做“刻刀”,把图案雕刻出来。
其中,以光线为“笔”、拓印图案这一步被称为光刻。在芯片制造几百道工序里,光刻是芯片生产中最重要的步骤之一。图案线条的粗细程度直接影响后续的雕刻步骤。目前市场上主流的光刻技术是DUV(深紫外线)技术,最先进的则是EUV技术。
完成这一步需要用到的设备——光刻机,一台售价从数千万美元高至过亿美元。要知道,美国最先进的第五代战机F-35闪电II式的售价还不到8000万美元。
放眼全球,光刻机市场几乎被3家厂商瓜分:荷兰的阿斯麦(ASML)、日本的尼康(Nikon)和佳能(Canon)。
在这3家中,阿斯麦又是当之无愧的一哥。据中银国际报告, 阿斯麦全球市场市占率高达89% !其余两家的份额分别是8%和3%,加起来仅有11%。 在EUV光刻机市场中,阿斯麦的市占率则是100% 。
要指出的是,阿斯麦并非生来就含着金汤匙。阿斯麦成立于1984年,入局光刻机市场晚于尼康(1917年成立,1980年发售其首款半导体光刻机)和佳能(1937年成立,1970年推出日本首台半导体光刻机)。成立之初,阿斯麦只有31名员工,还曾面临资金链断裂的窘境。
36年间,这家几近破产的小公司是怎样成长为光刻机一哥的?又是如何在十多年里占据第一宝座屹立不倒的?今天,智东西就来复盘这家荷兰光刻机之星的逆袭之路。
更为重要的一点,在美国狙击华为芯片供应的组合拳里,阿斯麦间接或直接地成为一颗关键棋子,美国人凭什么限制阿斯麦的生意,背后又有怎样的渊源?
在郁金香国度荷兰的南部,坐落着一个居民人数20余万的市镇,艾恩德霍芬,阿斯麦(Advanced Semiconductor Material Lithography,直译:先进半导体材料光刻技术)总部就位于此。
阿斯麦是一家采用“无工厂模式”的光刻设备生产商,主要产品就是光刻机,还提供服务于光刻系统的计量和检测设备、管理系统等。
翻开全球芯片厂商的光刻机订货单,其中绝大多数都发给了阿斯麦。以2019年为例,阿斯麦共出货229台光刻机,净销售额为118.2亿欧元,净利润为25.2亿欧元。相比之下,尼康出货46台,佳能出货84台。
▲阿斯麦、尼康、佳能出货量对比
除了出货量占优,阿斯麦(ASML)也代表着全球最顶尖的光刻技术。在阿斯麦2019年卖出的229台光刻机中,有26台是当今最高端的EUV(极紫外线)光刻机。而在EUV光刻市场,阿斯麦是唯一的玩家。
EUV光刻机采用13.5nm波长的光源,是突破10nm芯片制程节点必不可少的工具。也就是说,就算DUV(深紫外线)光刻机能从尼康、佳能那里找到替代,但如果没有阿斯麦的EUV光刻机,芯片巨头台积电、三星、英特尔的5nm产线就无法投产。
时间迈进2020,光刻机市场三分的格局中,阿斯麦已稳居第一10多年。在“光刻机一哥”光环的背后,阿斯麦又有怎样的故事?
智东西从技术路线选择、先进技术攻关、资金支持、研发投入等方面入手,还原出这个故事真实、立体的脉络。
罗马不是一天建成的,阿斯麦的成功也绝非一蹴而就。今日风头无两的光刻机市场一哥背后,是一个卑微的开始和一段曲折的往事。
故事要从20世纪80年代讲起,那时候距离摩尔定律被正式提出(1975年)不到10年,增加芯片晶体管数目还不是让全球半导体学者挤破头的课题。相应地,对光刻机光源波长的要求较低。当时的光刻机采用干式微影技术,简言之,光源发光,光线在涂有光刻胶的硅基底上“画”就完了。
比如,1980年尼康推出的可商用步进式重复式光刻机(Stepper),光源波长为1微米。连芯片厂家英特尔也自己设了个光刻机部门,用买来的零件组装光刻机。
通俗来说,步进式重复光刻机的工作原理是使涂有光刻胶的硅片与掩膜板对准并聚焦,通过一次性投影,在晶圆片上刻画电路。
▲尼康1980年推出的光刻机NSR-1010G
在这种背景下,荷兰电子产品公司飞利浦在实验室鼓捣出了步进式扫描光刻技术的雏型,但拿不准这项技术的商业价值。思前想后,它决定拉人入伙,让合作者继续研发,这样既有人分摊成本,也给了自己观望的机会。
步进式扫描光刻技术的原理是,光线透过掩膜板上的狭缝照射,晶圆与掩膜板相对移动。完成当前扫描后,晶圆由工作台承载,步进至下一步扫描位置,进行重复曝光。整个过程经过重复步进、多次扫描曝光。
▲步进式扫描光刻技术示意图
在飞利浦的设想里,理想的合伙人当然是技术先进、实力雄厚的美国大厂,如IBM、GCA之流。但在美国走了一圈后,飞利浦意识到了现实的骨感:各大厂商纷纷表示拒绝。
但是,并非所有人都不看好飞利浦的光刻项目,就在飞利浦碰壁之际,荷兰小公司ASMI(ASM International,直译为ASM国际)的老板Arthur Del Prado跑来,自荐要接下飞利浦的光刻项目。
▲Arthur Del Prado
ASM International创立于1964年,是一家半导体设备代理商,对制造光刻机并无经验。因此,飞利浦犹豫了1年的时间。最终,1984年,飞利浦选择“屈就”,同意与ASMI公司各自出资210万美元,合资成立阿斯麦,由这才开启了阿斯麦的故事。
阿斯麦首任CEO为Gjalt Smit,任职时间为1984~1988年。据称,由于阿斯麦成立初期知名度较低,Gjalt Smit曾在未经授权的情况下在阿斯麦招聘广告中使用飞利浦的标志。
▲阿斯麦创始初期CEO Gjalt Smit
2013年至今,阿斯麦总裁兼CEO由Peter Wennink担任。Peter Wennink早在1999年就加入了阿斯麦,曾担任过执行副总裁、首席财务官等职。在加入阿斯麦之前,Peter就职于全球四大会计师事务所之一的德勤会计师事务所。
▲现任阿斯麦总裁兼CEO Peter Wennink
其实,在与飞利浦合资成立阿斯麦之前约10年的1975年,ASMI就曾在香港开设办公室。最初,ASMI香港办公室只负责销售,随着时间推移,该办公室发展出了生产能力。1988年,ASMI在香港办公室的基础上成立了新公司ASMPT(ASM PACIFIC Technology,直译为ASM太平洋技术)。到今天,ASMPT已成长为全球最大的半导体组装和封装技术供应商之一。
作为站在阿斯麦、ASMI、ASMPT背后的操盘手,Arthur Del Prado成为一代业界传奇,被誉为“欧洲半导体设备行业之父”。2016年,这位传奇人物以85岁高龄逝世,但与他渊源颇深的三家半导体公司仍在创造新故事。Arthur的长子Chuck Del Prado,于2008年接替Arthur继任为ASMI CEO,并于2019年退休。ASMI现任CEO是Benjamin Loh。ASMPT现任CEO是Robin Ng。
回到阿斯麦的故事,飞利浦同意出资210万美元成立阿斯麦,但拒绝提供更多资金和办公场地。成立之初的阿斯麦只有31名员工,由于没有办公室,这31名员工就窝在飞利浦大厦外的简易木板房里办公。当时, 飞利浦绝不会想到,这个几乎被当作“弃子”的项目和退而求其次选择的小公司,孕育出的是能把尼康拉下马的光刻机新星。
▲垃圾车后面就是阿斯麦成立之初的简易木板屋,其后的大厦是飞利浦大厦
如前所说,20世纪80年代还是光刻机的技术红利期。在干式微影技术的技术路线下,阿斯麦成立的第一年就造出了步进式扫描光刻机PAS 2000。 但是,技术的红利期很快就会过去,之后发生的一切会造就光刻机市场的新格局。
▲阿斯麦于1984年推出的PAS 2000
进入21世纪,为了延续摩尔定律,人们改进了晶体管架构方式,但光刻机光源波长卡在了193nm上。这造成的后果是光刻“画”出的线条不够细致,阻碍晶体管架构的实现。要解决这个问题,最直接的方式就是把光源波长缩短,比如尼康、SVG等厂商试图采用157nm波长的光线。
实践中,实现157nm波长的光刻机并不容易。首先,157nm波长的光线极易被193nm光刻机使用的镜片吸收;其次,光刻胶也要重新研发;另外,相比于193nm波长,157nm波长进步不到25%,回报率较低。但在当时,这似乎是唯一的办法。
到了2002年,时任台积电研发副经理林本坚提出:为什么非要改变波长?在镜头和光刻胶之间加一层光线折射率更好的介质不就行了?那么什么介质能增加光的折射率呢?林本坚说,水就可以。与干式光刻技术相对,林本坚的技术方案被称为浸没式光刻技术。经过水的折射,光线波长可以由193nm变为132nm。
时间再往回推15年(1987年),林本坚就职于IBM,那时他就有了浸没式光刻技术的想法。2002年芯片制程卡在65nm之际,林本坚看到了浸没式光刻技术的机会。为了解决技术难题、消除厂商疑虑,林本坚花费半年时间带领团队发表3篇论文。
当时,业界质疑水作为一种清洁剂,会把镜头上的脏东西洗出来,还有人担忧水中的气泡、光线明暗等因素会影响折射效果。根据林本坚团队的研究,他们提出了一种曝光机,可以保持水的洁净度和温度,使水不起气泡。虽然这种曝光机并未在实际中被采用,但林本坚的研究证明了技术上的难题是可以被解决的。
他还亲自奔赴美国、日本、德国、荷兰等地,向光刻机厂商介绍浸没式光刻的想法。但是,有能力进行研发的大厂普遍不买账。
▲林本坚
个中原因也不难理解,自20世纪60年代起,玩家入局光刻机市场,在干式光刻技术上投入了大量财力、人力、物力,好不容易踏出一条可行的技术路线。如果按照林本坚“加水”的想法,各位前辈就得“一夜回到解放前”,从技术到设备重新 探索 。很少有人舍得这么高的沉没成本。但是,“很少有人”不代表“没有人”。
奔波到荷兰后,林本坚终于听到了一个好消息: 阿斯麦愿做这第一个吃螃蟹的勇士 。2003年10月份,ASML和台积电研发出首台浸没式光刻设备——TWINSCAN XT:1150i。2004年,阿斯麦的浸没式光刻机改进成熟。同年,尼康宣布了157nm的干式光刻机和电子束投射产品样机。
但是,一面是改进成熟的132nm波长新技术,一面是157nm波长的样机,胜负不言而喻。
数据显示,在2000年之前的16年里,ASML占据的市场份额不足10%。2000年后,阿斯麦市场份额不断攀升。 到2007年,阿斯麦市场份额已经超过尼康,达到约60%。
当命运之神把浸没式光刻微影的机遇摆放到阿斯麦、尼康等玩家面前,只有阿斯麦勇敢地伸出手,而尼康则是成也干式微影、败也干式微影。 在全球光刻机市场这一回合的较量中,阿斯麦选择了正确的技术路线,从而赢得了后来居上的机会。
▲首台浸没式光刻设备——TWINSCAN XT:1150i
如果说推出浸没式光刻机让阿斯麦领先尼康一步,那么突破EUV光刻技术则让它成为了名副其实的光刻机一哥。2010年至今,EUV光刻市场中只有阿斯麦一位玩家。
突破10nm节点能够带来的经济效益不必赘述,在众多玩家中,为什么只有阿斯麦掌握了EUV光刻机的核心技术?实际上,这与它集合了美国、欧洲的顶级科研力量有关。 这段故事还要从1997年讲起。
1997年,英特尔认识到跨越193nm波长的困难,渴望通过EUV来另辟蹊径。为了能从其他玩家处借力,英特尔说服了美国政府,二者一起组建了一个名为“EUV LLC(The Extreme Ultraviolet Limited Liability Company,极紫外线有限责任公司)”的组织。EUV LLC里可谓是群英荟萃,商业力量有摩托罗拉、AMD、英特尔等,还汇集了美国三大国家实验室。
EUV LLC里,美国成员构成了主体。在对外国成员的选择上,英特尔和白宫产生了分歧。英特尔看中阿斯麦和尼康在光刻机领域的经验,想拉他们入伙。但白宫认为如此重要的先进技术研发不该邀“外人”入局。
此时,阿斯麦显示出了惊人的前瞻能力,它向美国表示:我愿意出资在美国建工厂和研发中心,并保证55%的原材料都从美国采购,只求你们研究EUV一定要带我玩。
如此诚意让美国难以拒绝,就这样,阿斯麦成为EUV LLC里唯二的两家非美国公司之一,另一家是德国公司英飞凌。
反观尼康,这一次则完全是吃了国籍的亏。1998年发表的文件《合作研发协议和半导体技术:涉及DOE-Intel CRADA的事宜》,写明了尼康被排除在EUV LLC外的终极原因:“……有人担心尼康会成功将技术转移到日本,从而消灭美国的光刻工业。”
1997年到~2003年,阿斯麦和世界顶级的半导体领域玩家聚集在EUV LLC,用了6年时间回答一个问题:EUV有可能实现吗?他们发现答案是肯定的。至此,EUV LLC使命完成,在2003年就地解散,其中各个成员踏上独自研发之路。
其实,其他欧洲、日本、韩国的玩家也曾 探索 过EUV光刻技术。但是,他们的实力始终无法与汇集了美国顶级科研实力的EUV LLC相比,这意味着阿斯麦在EUV研发之路上占得先机。国际光电工程学会(SPIE)官网写出了EUV LLC的重要性:“如果不是EUV LLC对技术的形成和追求,EUV光刻技术就不会成为IC制造领域的未来竞争者。”
6年时间里,EUV LLC证明了用极紫外线作为光源造光刻机是可行的,但却没指出一条明路。到了2005年,EUV光刻机还是连个影子都没有,但巨额的研发资金、难以跨越的技术瓶颈已经足以让大多数玩家望而却步。但是,阿斯麦还是不肯死心,并且决定要牵头欧洲的EUV研发项目。 如果说在EUV LLC中,阿斯麦是蜷缩在角落里等待被其他大玩家“带飞”,那这一次,阿斯麦则是要自己做领头雁。
研发过程面临的困难无非集中在资金和技术两方面,阿斯麦把它们逐个击破。缺钱?那就去找,阿斯麦从欧盟第六框架研发计划中拉来2325万欧元经费。缺技术?阿斯麦集合3所大学、10个研究所、15个公司联合开展了“More Moore”项目,着力攻坚。
终于,2010年,阿斯麦出货了首台EUV光刻机。这台光刻机型号为NXE:3100,被交付给台积电,用于进行研发。
至此,在EUV市场,阿斯麦已经做到了人无我有,接下来的问题就是产品的迭代和进化。2013年,阿斯麦收购了光源提供商Cymer,为公司量产EUV设备打基础。经过几次升级,阿斯麦在2016年推出首台可量产的EUV光刻机NXE:3400B并获得订单。NXE:3400B售价约为1.2亿美元,从2017年第二季度起开始出货。直到今天,产品的迭代还在继续。根据阿斯麦的信息,EXE:5000系列光刻机样机最快在2021年问世。
从1997年到2010年,13年的艰难求索,终于让阿斯麦攻克了EUV的技术高地。辛勤付出终有回报, 目前,阿斯麦仍是唯一掌握EUV光刻技术的厂商。
▲阿斯麦的最新EUV光刻机TWINSCAN NXE:3400C
根据公开信息,一台EUV光刻机售价约为1.2亿美元,一台DUV光刻机的售价也要数千万美元。在高额售价的背后,是前期研发阶段巨量的资金投入。要支撑对光刻技术的研发,阿斯麦必须找到一条可持续的“财路”,否则就可能陷入困境。
事实上,阿斯麦也的确经历过“财政危机”。1988年,阿斯麦进军台湾市场,还未来得及在新的市场竞争中喘口气,老东家ASMI就因无法获得预期内的回报比作出撤资决定。同时,由于当时全球电子行业市场不乐观,飞利浦也宣布了一项成本削减计划。内外夹击之下,阿斯麦几近破产。好在危机时刻,时任阿斯麦CEO Gjalt Smit联系了飞利浦董事会成员Henk Bodt,后者说服了飞利浦董事会,为阿斯麦拉来一笔约1亿美元的“救命钱”。
这笔资金帮助阿斯麦在进军台湾市场的初期站稳了脚。随后几年,阿斯麦凭借步进式扫描光刻机扭亏为盈,并于1995年3月15日在阿姆斯特丹和纽约证券交易所成功上市,上市首日市值为约1.25亿美元。
▲Henk Bodt
为了能够获得充足的资金支持,2012年,阿斯麦提出一项 “客户联合投资计划”(CCIP,Customer Co-Investment Program) ,简单来说,就是接受客户的注资,客户成为股东的同时拥有优先订货权。这无疑是一个双赢的举措:把阿斯麦的研发资金压力转移出去,让客户为先进光刻技术的研发买单,这样不仅使阿斯麦无后顾之忧地进行研发,也保证了客户对先进光刻技术的优先使用权。
2012年,芯片制造行业3大龙头英特尔、台积电、三星都推出了22nm芯片产品。CCIP计划一经推出,这3家公司纷纷响应。根据协议,英特尔斥资41亿美元收购荷兰芯片设备制造商阿斯麦公司的15%股权,另出资10亿美元,支持阿斯麦加快开发成本高昂的芯片制造 科技 。台积电投资8.38亿欧元,获取阿斯麦公司约5%股权。三星斥资5.03亿欧元购得3%股权,并额外注资2.75亿欧元合作研发新技术。
最终,阿斯麦以23%的股权共筹得53亿欧元资金。要知道,2012年全年,阿斯麦的净销售额才约为47.3亿欧元。
在 科技 圈,研发、创新能力就是生命力。华为5G、芯片技术为什么强?任正非曾在接受采访时表示,2020年华为将把约200亿美元(约合人民币1420亿元)花在研发上。而在研发方面,阿斯麦与华为一样“疯狂”。
早在2002年,阿斯麦就敢向浸没式光刻技术押注。到了今天,大力投资搞技术研发已经成为阿斯麦的传统。
根据2019年度财报, 阿斯麦全年投入了20亿欧元用于技术研发,占到净销售额(118.2亿欧元)的16.9% 。相比之下,2019年尼康在光刻系统上的投资为3.98亿日元,占到光刻系统营收(2397.28亿日元)的约0.17%。
2007年开始,“时年”13岁的阿斯麦开始以领先的姿态傲然于光刻机市场,至今仍然如此。列出阿斯麦近些年的研发投入,或能解释它这么多年来屹立不倒的原因。
▲近5年阿斯麦研发投入及营收情况
另外,在专利网站Patentscope上的搜索结果显示, 阿斯麦申请的专利数目已经达到14444项 。阿斯麦虽然是一家商业公司,但支撑它走得更远的,不是对金钱的追求,而是对技术的长远投资。
回顾过去36年,阿斯麦从一个蜷缩在木板房中的小公司成长为一代光刻机巨擘,其中原因少不了 历史 的机遇,如林本坚适时提出了浸没式光刻技术的想法。但是,更具决定性意义的是阿斯麦准确的前瞻和果断的选择,比如,在21世纪初,阿斯麦放弃干式微影,转投浸没式光刻技术;再比如,早在1997年,阿斯麦以自身妥协换来EUV LLC的入场券。对于商业与技术相互促进的关系,阿斯麦还有着深刻的理解,多年来对技术研发的大力投入,成为它屹立不倒的重要原因。手握顶尖的技术,阿斯麦还获得了客户的支持,从而在全球光刻机市场中走得更远。
以阿斯麦这36年的历程为鉴,对比我国。1977年,我国第一台光刻机诞生,加工晶片直径为75毫米。今天,国产光刻机制造商有上海微电子、中科院光电所等,最先进的设备推进至22nm节点,而国际最先进工艺已突破5nm节点。国产光刻机无疑还有很长的路要走。
芯片是“中国制造”的痛点。不论是近期华为被美国断供芯片的新闻,还是两会政府工作报告中“国产化”“功率半导体”“传感器芯片”等话题被一再提及,背后的事实都让人黯然:我们曾在一穷二白的条件下造出原子弹,但在GDP总量近100万亿人民币的今天,中国还是难以独立造“芯”。在种种困难中,光刻技术直接卡住了芯片制造的“脖子”。
要解决这一问题,技术攻关当然是必不可少的。另外,借力国外成熟产品或可帮助芯片制造商实现突破。2018年,我国芯片公司中芯国际花费约1.2亿美元,向阿斯麦订购了一台EUV光刻机。由于种种原因,目前,这台光刻机还未成功交付。我们期待它能够尽快落地中国,助力我国的芯片事业再上一个台阶。中国有市场、有人才,也不缺恒心与毅力,相信我国光刻机事业会有光明的未来。
参考文献:
1、《曾经的光刻机霸主:尼康营收暴减九成,裁员 700 人》EE Times China
2、《全球半导体设备龙头专题(一)》安信证券
3、《阿斯麦封神记:这家荷兰公司,扼住了全球半导体芯片的咽喉》魔铁的世界
4、《光刻机的发展与荷兰ASML公司的故事》光纤在线
5、《做成那不可能之梦:低调华人科学家颠覆技术 影响人类》知识分子
6、《More Moore” Shows European EUV Innovation at EUV 2006 in Barcelona》CORDIS
提取失败财务正在清算,解决方法步骤件事就是冷静下来,保持心...
本文目录一览:1、邮政银行2、东吴基金管理有限公司3、邮政...
本文目录一览:1、联发科前十大股东2、中国经济改革研究基金会...
申万菱信新动力5.23净值1、申万菱信新动力股票型证券投...
本文目录一览:1、2000年至2020年黄金价格表2、3002...