台积电和光刻机不能作为对比,台积电是全球比较大的芯片代工厂是做芯片加工的,而光刻机是加工芯片的工具,台积电公司里面有挺多光刻机的,没有光刻机他也生产不了顶级的芯片啊
在人类 科技 发展的历程中,每一种新材料的发现,都把人类支配自然的能力提升到一个新的高度,追溯 历史 的长河,无论哪个时期,哪个国家,只要拥有了先进的材料基础,就会引领世界的发展方向。
七十多年前,美国物理学家费曼提出了一个伟大的构想:
“如果有一天,可以按人的意志排列一个个原子,将会产生怎样的奇迹?”
费曼不愧为最伟大的量子力学大师,因为他知道在微观粒子尺度上,物质的物理、化学和生物学特性都会和宏观尺度下的原物质大相径庭。因此,若能重建物质的原子排列方式,就能彻底改变物质的属性,这将对未来的 科技 、工程和医学等领域产生极为深远的影响。
01
碳是一种非常神奇的元素, 它既有一定的金属性(原子失去电子的能力),也有一定的非金属性(原子得到电子的能力),但两种属性都不强,所以碳元素具有“模棱两可”的状态。
这种中性的原子状态,消除了碳原子的化学极性。失去了极性,就有了更多的可能:
碳不是地球上含量最多的元素(排名第十二),但其拥有的化合物种类却是所有元素中最丰富的。
因而地球上绝大多数的重要化合物,都离不开碳的身影,比如 氨基酸 就是以碳元素为基础的碳链,DNA的基本组成单位 脱氧核苷酸 ,也是长长的碳链,所有地球生命都可以叫做碳基生命。
在日常生活中,我们也会常常接触到许多含碳的物质,从较软的石墨到最硬的钻石,尽管组成物质都是碳元素,但是由于 碳原子排列方式 不同,它们展现出的 材质特性 也完全不同。
钻石的产量和价格决定了它并不能走入寻常百姓家。而科学家在分离石墨时发现,它们的碳原子会紧密连接而成二维蜂窝状晶格结构,科学家将这种碳原子结构称为 石墨烯 ,其具有一大堆的神奇特性:
比如发生破损时,只需要用含有碳原子的物质接触,它就能进行自我修复;有超高的透光率,看起来几乎就是透明的;有极高的力学、导电和导热的性能等等。
所有这些优异的特性,都让科学家们垂涎欲滴, 可是即便我们完全清楚这种材料的特性——在微观尺度上有着不同寻常的结构,但想要把它们制造出来,却是一件非常困难的事情。
简单说来,若能从石墨片表面撕下1个碳原子那么厚的薄薄一层,我们就获得了石墨烯。
可是,即便科学家们想尽了各种办法,其中包括氧化还原法、取向附生法、化学气相沉积法等等。但这些方法制造出来的石墨烯,要么是不够均匀,要么就是成本过于高昂。
直到2004 年 ,英国科学家 安德烈·盖姆 和 康斯坦丁·诺沃瑟洛夫 发明了一种非常简单的方法——“机械剥离法”:
就是从高定向热解石墨中剥离出石墨片,然后将石墨片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地重复这样的操作,石墨片越来越薄,最后,再用溶液把胶带溶解掉,得到仅由一层碳原子构成的薄片,这就是石墨烯。
凭借这种简单有效的“撕胶带”方法,两位科学家获得了2010年度的诺贝尔物理学奖 。
但是,这种制取石墨烯的方法依然有缺陷:
理论上使用胶带总是可以把石墨一分为二,可是胶带上的胶也并不总是均匀的,这会导致石墨烯的完整性被破坏,所以这种方法制取的石墨烯通常都是几微米大小的碎片。
看来人类若想在微观状态下获取新型材料,此时仅仅是看到了一丝曙光而已……
不过,值得庆幸的是,如今有一种加工精度已到纳米级的(1原子约为0.1纳米)技术—— “光刻”, 已经发展得非常成熟可靠:
这种方法是将半导体硅材料在 紫外光 的照射作用下,利用 光学 化学反应 和 化学 物理刻蚀 的方法,将细微到纳米级的电路图复刻到硅单晶表面。
经过光刻加工的硅芯片也可以算作是一种特殊材料,因为通过加工精度细微到纳米级的微观结构,可以使硅芯片在通电后可以具备传递、计算和存储等神奇的功能(需要软件的配合)。
但目前有一个难点是,当硅芯片的加工精度突破5纳米后,便已经到达它的物理极限——引发电子的隧穿效应,此时的芯片便会不受控制地产生漏电现象,导致芯片的功耗明显增加。
因此, 除了撕胶带法和光刻技术,我们还需要寻找另外一种制造具备神奇特性新材料的方向 :
“ 比如直接操纵原子得到所需的新结构材质。”
02
实际上,我们对单个原子的操纵早就实现了。1989年9月28日,IBM阿尔马登研究中心的物理科学家、IBM院士 多恩·艾格勒 成为人类 历史 上第一个控制和移动单个原子的人。
当年11月11日, 艾格勒 和他的团队用扫描隧道显微镜操控35个氙原子,拼写出了“I、B、M”三个字母,由此开启了人类操纵原子的新纪元。
扫描隧道显微镜发明于1981年,作为一种扫描探针显微术(分辨率为纳米级)工具,它其实是没有镜片的,靠的是一个针尖和样品之间的隧道电流来测量样品表面。它可以观察和定位单个原子。此外,扫描隧道显微镜的最大贡献是:
在4K(-269.15 )低温的超高真空下可以利用探针尖端精确操纵单个原子:
利用导电探针尖与样品表面的隧穿电流,为探针尖端原子和衬底原子提供可控的相互作用力。
可是,扫描隧道显微镜所观察的材料必须具有一定程度的 导电性 ,这便决定了它的局限性:
“对半导体材料的观测效果要差于导体,而对于绝缘体则根本无法直接观察。”
1985年,物理学家格尔德·宾宁又“魔力上身”,联合IBM公司苏黎世研究中心的 克里斯托夫·格贝尔、斯坦福大学的加尔文·奎特共同 发明出了一种使非导体也可以采用类似扫描探针显微镜观测的机器——原子力显微镜。
这是一种可用来研究包括绝缘体在内的材料表面结构的分析仪器,属于一种接触式的显微镜,它利用探针与样品间的接触力,得到样品的表面形貌。原子力显微镜同样具有诸多优点:
“可以提供真正的三维表面图;不需要对样品作任何特殊处理,在常压下甚至在液体环境下都可以良好工作;可以用来研究生物宏观分子,甚至是活的生物组织。”
那么,把二者相互结合在一起便会产生大于1+1 2的效果,2017年2月13日,IBM的科学家们用扫描隧道显微镜结合原子力显微镜突破了一项重大科研成果:
他们用扫描隧道显微镜的针尖手工“敲打”原子,首次成功合成并捕捉到能稳定存在4天之久的三角烯分子。
长期以来,科学家们一直认为三角烯分子根本无法以晶体形式合成,因为它们会不受控制地聚合。
三角烯是一种由六边形 碳原子 环状构成的分子材料,与石墨烯极为相似,不过和成片状展开的石墨烯不同,三角烯中仅含六个六边形碳环,并呈现出类似于三角形的形状。
由于这种不寻常的排列方式会产生两个不成对的电子,使得三角烯极易被氧化,难以稳定存在。所以三角烯分子自1950年被捷克科学家埃里希·克拉尔首次预测以来,一直未能被人工合成。
因此,为了验证实验是否成功,IBM团队成员对生成物的形状、对称性、磁性等特性进行研究。结果发现,生成物确实呈现出三角形结构,而且能在铜表面稳定存在。另外两个未配对的电子也表现出一种特别的电子自旋现象,使得三角烯在分子水平上呈现出磁性。
那么,自从石墨烯面世后,研究者普遍认为石墨烯是一种抗磁材料——即 石墨烯没有磁性 以及不能被磁化。现在碳原子呈三角烯结构竟然具有非常独特的 磁性性能 。这无疑颠覆了人们的固有认知,甚至可以带动一个改写 历史 的领域兴起——碳基磁性材料的时代来临:
“这意味着碳原子的三角烯结构可以用来构建量子计算机及自旋电子器件等。并且 这一操作结果可进一步带来更多颠覆性的技术,最终目标便是能够制造任意的分子结构。”
03
当然,操纵原子这一设想不能只有一种方法,1970年,美国物理学家亚瑟·阿什金发现:
“激光束产生的力可以推动分布在水或者空气中的微小粒子,并且散射的激光也会对微粒产生明显的推力。”
1986年, 阿什金 做了一个实验:
他用一束聚焦的激光来照射粒子,激光的散射光与激光本身组成了一个陷阱,像镊子一样把粒子固定住了,这就是著名的 光镊 ,阿什金也因此被称为“光镊之父”。
在观看了这个实验后,阿什金在贝尔实验室的同事,华裔科学家 朱棣文 大受启发,他立即投入了相关的研究。
朱棣文发现,激光的压力可以让高速运动的原子和分子减速,并且让它们冷却下来。他用来自不同方向的多束激光,把原子控制住。1997年,朱棣文幸运地凭借着激光冷却和捕获原子的方法,先于阿什金获得了诺贝尔物理学奖,成为第五位获得诺奖的华裔科学家。
一直到2018年,已经96岁高龄的阿什金,终于等来了他的诺贝尔奖。他发明的光镊,也是目前最有希望参与活体细胞甚至是基因编辑的技术原理:
“”光镊可以非接触、无损伤地操纵活体物质,并且它产生的压力适合于生物细胞、亚细胞以及原子物理的研究。”
每当我们认为科学的发展已经到了瓶颈的时候,这些可爱的科学家们总会让我们看到新的希望。未来可期!
#2021生机大会#
芯片生产过程整体上可以分为三个环节,分别是芯片设计、芯片制造和芯片封装。其中芯片制造是最硬核的一个步骤,涉及到各种顶尖的技术,设备和材料等等。
任何一个细节出现纰漏,都有可能影响芯片制造的效果。大家都知道光刻机对芯片生产有很重要的意义,但实际上芯片制造关键之一也包括了光刻胶。
如果说光刻机是制造过程中必不可少的设备,那么光刻机就是保证制造芯片前的关键。光刻胶作为一种有机化合物,在被紫外光曝光后,以液态的形式涂抹在硅片上,从而干燥成胶膜,保护硅片在光刻过程中的作业。
在芯片制造所涉及的材料上,光刻胶是不可或缺的。而光刻胶的应用领域非常广,包括在印刷工业领域。
只是由于集成电路产业规模的增长,加大了对光刻胶材料的应用。只不过光刻胶一直被日本企业垄断。包括东京应化,富士胶片等日本企业都是光刻胶领域的巨头。
因为在光刻胶产业有着极大的话语权,所以不少国家都要选择与日本合作,进购光刻胶。日本长期维持对光刻胶的垄断,但中国企业传来好消息,突破了关键芯片材料,打破垄断。
中国企业这些年在各项半导体集成电路领域一直在发展,其中涉及到芯片材料的光刻胶上也取得了进展。
据科创板日报消息,南大光电控股子公司自主研发的ArF光刻胶产品已经通过了客户认证,这次通过认证以后,意味着ArF光刻胶产品的开发和产业化取得了关键突破。这也是国内首个国产ArF光刻胶。
据了解,ArF光刻胶可以用在90nm-14nm,甚至是7nm芯片制程技术的应用,在高端芯片制造能发挥重要作用。
如今南大光电突破关键芯片材料,打破日本技术垄断,而且关键性堪比光刻机。虽然距离生产高端芯片还有一段路要走,但是每一次实现的技术突破,都是在为将来生产高端工艺芯片打下基础。
芯片设计有华为海思、芯片制造有中芯国际、芯片材料有南大光电,还有光刻机设备制造也有上海微电子。
集合这么多的顶级 科技 力量,相信未来我们能够在更多的关键技术上迎来突破。
芯片制造是一项复杂的过程,从设计到制造,再从制造到封装,一颗小小的芯片能够被生产出来,背后有太多的不容易。
但是这并不代表会放弃,相反还会激励我们不断向前。前有华为突破5nm设计芯片,后有南大光电打破日本技术垄断,带来ArF光刻胶,为中国芯片制造产业做出巨大贡献。
在芯片制造产业的进展已经非常迅速了,比如中芯国际在梁孟松的帮助下,从三年前的28nm到今年量产14nm,最快明年就能尝试生产7nm芯片。将来要是能获得EUV光刻机,更高的5nm,以及3nm都开始进行研究。
为了鼓励芯片制造企业加强技术研发,我国给予最高免税十年的待遇。还要培养半导体人才,这一切都说明,以前落下的功课,我们正在补上。所有取得高分的学霸,都是一点一滴积累起来的。
南大光电在ArF光刻胶上取得突破,完成了客户认证。这仅仅迈出了第一步,还有第二步,第三步。像南大光电这类的企业在我国还有很多,他们都在默默为中国半导体付出。
曾几何时,国产芯片有这么快的进展速度。因为华为让我们认识到自主技术的重要性,只有掌握核心 科技 才能睡上安稳觉。期待国产半导体能取得更大的突破。
对南大光电突破ArF光刻胶你有什么看法呢?
冰刻技术完全可以实现与EUV光刻机相当的精度。只不过要实现这个精度,必须让电子束直写光刻机的的分辨率达到纳米级别才行。
其实“冰胶+电子束”的效率是远远比不上“光刻胶+光刻机”的。因为要让水蒸气凝结在晶片上,还必须在零下140 进行,此外使用的还是电子束刻机,要一点一点的进行雕刻那速度比较慢。从制造效率上来看,这种冰刻技术是不如光刻机的。而冰刻的分辨率主要取决于电子束刻机,虽说电子束直写光刻机的精度已经达到了10纳米左右甚至以下的精度,但是国内电子束直写光刻机的精度在1微米,还没有达到纳米级别。事实上,冰刻技术只是将化学的光刻胶换成了水蒸气而已。
早在2018年,就发布了冰刻系统,这次的冰刻则是其升级版,主要就是将原料生产为成品。由于传统的光刻胶属于化学试剂,在光刻完成后还要进行清洗,清洗不干净的话就会导致良品率下降。而使用水蒸气凝固代替传统的光刻胶之后,就不存在清洗不干净这类问题了。
在电子束的作用下,凝固的水蒸气可以直接液化消失而不会残留在晶片上,这样一来就不会导致晶片被污染了,这是冰胶相对于传统光刻胶的优势所在。但是使用冰胶前,要将晶片放在零下140 的真空环境中,给其降温,再通入水蒸气。相对于传统的光刻胶来说,就多了这样一个步骤。估计当水蒸气凝固在晶片上之后,从拿出来,到光刻完成之前都要在0 以下的环境中进行操作,毕竟温度超过0 ,凝固的水蒸气就有可能液化成水,这也是相对于传统光刻胶的一个缺点。
由于冰刻系统的分辨率与电子束直写光刻机的分辨率有关,只要电子束直写光刻机的分辨率可以达到EUV光刻机的分辨率,那么使用冰刻系统生产的芯片的制程工艺就可以达到EUV光刻机的生产芯片的制程工艺。
只不过,现在世界上分辨率最高的电子束直写光刻机掌握在日本的JEOL和Elionix这两家公司手中。其中JEOL公司制造的的JBX-9500S电子束直写光刻机的套刻精度为11纳米,最小分辨率在0.1纳米左右。而Elionix公司制造ELF10000电子束直写光刻机的分辨率为100纳米。而国产BGJ-4电子束直写光刻机的分辨率为1微米,由此可见,即便使用了冰胶,在立足于国内电子束直写光刻机的前提下,是达不到国产SSA600/20的分辨率,更别说赶上EUV光刻机了。
我国碳基芯片的发展还是很快的,基本上与美国的技术不相上下。目前的碳基芯片已经突破到了3纳米,而我国正在向0.5纳米进发。碳基芯片的性能要比传统的硅基芯片强不少,基本上90纳米的碳基芯片性能相当于28纳米的硅基芯片,45纳米的碳基芯片相当于7纳米的硅基芯片。只不过,碳基芯片依然要用到光刻机,现阶段国内制程工艺最小的光刻机也停留在90纳米,而使用冰胶的电子束直写光刻机还在微米层。所以说,这次冰刻技术对国内碳基芯片的帮助不是很大。
很多方法都可以制作芯片,甚至精度比光刻机高,但是最大的问题是,没有办法解决效率问题,光刻目前效率最高。据路边社推算,其实全球是euv光刻机的需求才六百台,也就是说这个东西,效率是相当特别很高的。
光刻机(Mask Aligner) 又名:掩模对准曝光机,曝光系统,光刻系统等。常用的光刻机是掩膜对准光刻,所以叫 Mask Alignment System.
一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀等工序。
Photolithography(光刻) 意思是用光来制作一个图形(工艺);
在硅片表面匀胶,然后将掩模版上的图形转移光刻胶上的过程将器件或电路结构临时“复制”到硅片上的过程。
北斗系统由空间段、地面段和用户段三部分组成。
——空间段。北斗系统空间段由若干地球静止轨道卫星、倾斜地球同步轨道卫星和中圆地球轨道卫星等组成。
——地面段。北斗系统地面段包括主控站、时间同步/注入站和监测站等若干地面站,以及星间链路运行管理设施。
——用户段。北斗系统用户段包括北斗兼容其他卫星导航系统的芯片、模块、天线等基础产品,以及终端产品、应用系统与应用服务等。
说到 中科院 ,我国大部分民众的第一反应是“emmmm,这是 我国科研机构的国家队 ”,或者“emmmm,很厉害, 是我国最高科研机构 ”。实际上大部分人对中科院的印象都是比较片面的,中科院其实是从广义上来讲 并不是一个单独的机构 ,也不仅仅只是一个科研国家队这么简单,中科院在很多领域都有下设的 分支机构 ,比如 中科院微电子研究所、中科院化学研究所、中科院力学研究所等等机构 ,院机关有 十三个 ,分院有 十二个 ,研究单位有 一百一十四个 等等,总之是一个组织架构非常庞大的机构。
当然,群众不太了解也很正常,因为 科学研究本身就不是一个容易被大众所熟悉的领域 ,也不具备泛 娱乐 性,即便是身在科研领域也未必能够数的清楚这些林林总总的机构, 所以中科院不被大众所熟知是情理之中的事,并非群众孤陋寡闻。
因此对于中科院我国大部分民众只知道“很厉害”,但对于中科院的科研能力却所知甚少,甚至现在 中科院下场开始主力研究我国被卡脖子的光刻机技术 时,还有一些网友提出质疑说中科院能行吗?
能不能行,我们用事实说话!在这里我们只举几个例子, 我国的第一台电子计算机到现如今独步天下的超级计算机是中科院主导研究出来的 ,世界第一次人工合成牛胰岛素也是在中科院的主导下取得的辉煌成绩,高铁技术能在我国复杂的地形上建设至今中科院也是功不可没,除此之外类似的成绩还有很多,那么我们还用去怀疑中科院的能力吗?
那是不是 我国现在各种需要攻克的技术难关都需要中科院去做呢? 也并不是,现任中科院院长白春礼已经明确地表示,中科院不可能包揽天下所有的技术开发,而是应该把主要精力聚焦在一些核心技术上, 把握了核心 科技 才能把握未来 。因此中科院之于我国, 相当于部队里精锐中的精锐 ,或许在一些常规战役中我们见不到他们的身影,但是在关键时刻他们绝对可以带领大家杀出一条血路。
那么关于光刻机的研究尚需时日,我们暂时还看不到捷报,不过中科院最近取得的一项新的研究进展也格外令人兴奋, 甚至意非凡——人工感受神经系统。 这项技术的实现方案是由中科院微电子所提出来的, 在某种意义上 , 这个新进展带来的价值,要比光刻机深远得多。
简单地说,人工感受神经系统,是应用在机器人身上的一种感知系统,能够让机器人或者人工智能设备具备更加“聪明”,而不是像现在 某些所谓德国高 科技 机器人那样“智Z”。 人工感受神经系统的另一个称呼叫做习惯化感受神经系统,其初级的应用就是能够让智能机器人精准的识别障碍物从而做出躲避或者绕行的动作。
那么有人会说,现在市面上已经有很多机器人都已经实现了躲避障碍物的功能这有什么好稀奇的?那么我们也说了, 躲避障碍物只是最初级的应用, 而习惯化感受神经系统最大的优势就是能够配合其他类别的传感器, 让机器人拥有更多的“类人”能力,比如味觉、嗅觉等等。
这样技术为什么十分具有意义呢?我 们举个例子,目前全球最出名的智能机器人应该就是“阿尔法狗” ,但是阿尔法狗也从某种程度上来说,还仅仅停留在深度学习的层面上,尚未具备真正的人工智能机器人的要求。
而为什么我们现在还在不出科幻电影中那些行动机敏、反应迅速的机器人,其中最重要的一个原因就是目前的技术还达不到让 智能机器人具备强感知力,尤其是对平衡的把握。 有些对 科技 略有了解的网友认为,陀螺仪就可以保证机器人的平衡,这种想法不能说错,但是又很强的局限性—— 应对履带式机器人尚且可以,但是如果是类人的用双腿、或者仿生的四条腿机器人来说,就没那么简单了。
毕竟机器人终究是硅基形态,并没有人体以及其他碳基类生物复杂的肌理结构,人类和其他生物之所以能够保持平衡,是因为生物肌理形态等原因导致我们连毛孔都具备超强的感知力,你能感觉到自然绝微风的存在,那都是毛孔的攻来,但是对于机器人来说,想要实现超强感知力可就没那么容易了。
但习惯化感受神经系统则有可能让这些复杂的感知力能够被人工智能所掌握, 进而产出真正的人工智能机器人 。不过这也仅仅只是猜测,想要实现那一步路还很长,之所以说中科院微电子所得这一研究意义十分重大,是 因为现阶段习惯化感受神经系统能够应用在机器人身上的技术,可以有效促进我国救援、维修、航空航天等诸多领域的效率提升 ,而这种广泛的应用,可不是一台光刻机的价值能够比的上的。
并且,人工智能是通往未来世界的钥匙,甚至下一次工业革命就是看人工智能的发展呢对于进一步解放生产力的促进,因此中科院此次的新进展从某些角度来看, 甚至可以说是划时代的进步。
因为我国在人工智能方面,已经处在世界顶级技术的第一梯队里,仅 仅科大讯飞的语言技术就让全世界其他公司望尘莫及,而中科院此次的新进展讲极大促进我国人工智能更上一层楼!
提取失败财务正在清算,解决方法步骤件事就是冷静下来,保持心...
本文目录一览:1、邮政银行2、东吴基金管理有限公司3、邮政...
本文目录一览:1、联发科前十大股东2、中国经济改革研究基金会...
申万菱信新动力5.23净值1、申万菱信新动力股票型证券投...
本文目录一览:1、2000年至2020年黄金价格表2、3002...